Projection-minimization methods for nonsymmetric linear systems
نویسندگان
چکیده
منابع مشابه
Projection Methods for Linear Systems
The aim of this paper is to give a uniied framework for deriving projection methods for solving systems of linear equations. We shall show that all these methods follow from a unique minimization problem. The particular cases of the methods of steepest descent, Richardson and conjugate gradients will be treated in details. Projection acceleration procedures for accelerating the convergence of a...
متن کاملAccelerated Methods for the Block Cimmino Row Projection Method for Solving Large Nonsymmetric Linear Systems
The use of the row block projection method (block Cimmino) for solving nonsymmetric linear system Ax = b gives rise to a symmetric positive definite system G x = g, where B is the sum of orthogonal projection matrices Pi = Ai(ATAi)-'AT, and where the Ar's are block rows of A. In this paper we present an efficient implementation of the cgT method for solving the derived symmetric positive defini...
متن کاملRandomized Projection Methods for Corrupted Linear Systems
In applications like medical imaging, error correction, and sensor networks, one needs to solve large-scale linear systems that may be corrupted by a small number of, but arbitrarily large, corruptions. We consider solving such large-scale systems of linear equations $A\mathbf{x}=\mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $\mathbf{b}$. With this as our motiva...
متن کاملOn Squaring Krylov Subspace Iterative Methods for Nonsymmetric Linear Systems
The Biorthogonal Lanczos and the Biconjugate Gradients methods have been proposed as iterative methods to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld [19] obtained the Conjugate Gradient Squared by squaring the matrix polynomials of the Biconjugate Gra dients method. Here we square the Biorthogonal Lanczos, the Biconjugate Residual and the Biconjugate Orth...
متن کاملApproximate Inverse Preconditioning of Iterative Methods for Nonsymmetric Linear Systems
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods. 1. Introduction. We describe a method for computing an incomplete factorization of the inverse of a general sparse matrix A 2 IR nn. The resulting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(93)00348-4